Byggeriets Produktivitet
Udvikling i boligbyggeriets standard
Dokumentationsrapport 2
Byggeriets Produktivitet
Udvikling i boligbyggeriets standard

Dokumentationsrapport 2

Jørgen Nielsen
Erik Steen Pedersen
Kim Haugbølle
Indhold

Forord ..4
Resumé ...5
Indledning ..6
Metode...7
 Makro- mikroanalyser ...7
 Kilder til produktivitetsforbedringer ...9
 Målemetode ..10
 Udvælgelse af cases ..13
Fire cases ..14
 De fire boligbyggerier ..14
 Sammenligning af byggetekniske løsninger ...15
 Værdi af øget standard ..18
 Byggepriserne over tid ..20
Konklusion ...22
Litteratur ..23
Bilag 1. Tidslinje - byggeriets udvikling ...24
Bilag 2. Indsamlede oplysninger ..25
 Herman Bangs Plads ...26
 Sjælør Boulevard ...28
 Emaljehaven (Marstrands Have) ..30
 Havnestaden ..32
Bilag 3. Sammenligning af løsninger ...34
 De fire lejligheder ...34
 Facader ...35
 Facade-/ vinduesparti ...36
 Badeværelser ..37
 Køkken og skabe ..38
 Altaner ..39
 Installationer ...39
 Ventilation ..39
 Overflader ..39
Bilag 4. Foto-dokumentation ...40
 Facader ...40
 Opgang ..44
 Badeværelse ..47
Forord

Denne rapport beskriver resultaterne af en analyse af udviklingen i boligbyggeriets standard over de seneste 50 år. Analysen er en del af et større projekt med titlen Byggeriets produktivitet. Projektet er blevet til som en led i SBi’s indsats vedrørende byggeriets processer og produktivitet.

Projektet har modtaget finansiel støtte fra Boligfonden Kuben og værdifuld faglig støtte fra en følgegruppe bestående af:

– BAT-Kartellet, v/ Sidse Buch
– Boligselskabernes Landsforening, v/ Bent Madsen
– Bygherreforeningen i Danmark, v/ Henrik Bang
– Dansk Byggeri, v/ Finn Bo Frandsen
– Danske Arkitektvirksomheder, v/ Christian Lerche
– Dansk Erhverv, v/ Bo Sandberg
– Foreningen af Rådgivende Ingeniører, v/ Henrik Garver
– Håndværkersrådet, v/ Thea Gade-Rasmussen
– MANCON, v/ Keld Fuhr Pedersen
– Socialministeriet, v/ Karsten Gullach
– Tekniq, v/ Søren Rise

KAB har stillet data til rådighed og været behjælpelig med at skaffe adgang til de boliger, der indgår i undersøgelsen. M. T. Højgaard A/S har medvirket ved fastsættelse af priser for byggetekniske løsninger.

Statens Byggeforskningsinstitut, Aalborg Universitet
Byggeri og sundhed
April 2010

Niels-Jørgen Aagaard
Forskningschef
Denne undersøgelse indgår i et projekt, hvis samlede formål er at trænge bag om to af myterne om dansk byggeri, nemlig at byggeriets produktivitet ikke er øget væsentligt gennem de seneste 30 år, og at byggeriets standard og kvalitet har været stort set uændret over tid i modsætning til industriens. Projektet er planlagt med tre delanalyser:

Delanalyse 1 er gennemført og foreløbigt afrapporteret (Larsen, 2006). Nærværende notat omhandler delanalyse 2. Undersøgelsen bygger primært på den opfattelse, at en produktivitetsudvikling lige så vel kan udmøntes i en forøget standard som i en lavere pris. Et væsentligt element i analysen har derfor været at påvise ændringer i boligbyggeriets standard og undersøge mulighederne for at værdifast sætte dem.

Analysen er gennemført ved at udvælge og analysere det teknologiske værdiindhold i fire tidstypiske almene boligbebyggelser fra årene 1957, 1970 og 2005 (to bebyggelser).

Blandt resultaterne er udviklingen af en metode til synliggørelse af værdien af øget byggeteknisk standard, og anvendelse af metoden har vist, at over de seneste 50 år kan værdien af en øget byggeteknisk standard opgøres til omkring 20% af håndværkerudgifterne. I samme periode er der næsten sket en tredobling af den forbrugerindeksregulerede pris på boligbyggeriet, således at værdien af den øgede standard kun forklarer en lille del af denne stigning. Efter korrektion for øget værdi af byggeteknisk standard er den forbrugerindeksregulerede pris på boligbyggeriet således mere end fordoblet.

Det leder til et mere fundamentalt spørgsmål om hvad der styrer udviklingen af værdi og omkostninger i boligbyggeriet. Analysen styrker en hypotese om at øget mangfoldighed i udbuddet af byggetekniske løsninger samt om at mere varierede (mindre) bebyggelser repræsenterer en betydelig værdi, som omvendt også rummer et potentielle for produktivitetsgevinster. Endvidere giver analyse ikke grund til at antage, at der er sket nogen væsentlig udvikling i rådgiverhonorarer. Det er påfaldende i lyset af makroanalyser i projektets delanalyse 1, hvor der over en 30-årig periode fra 1972 til 2002 er påvist en stigning i input fra rådgivere fra en syvendedel til en tredjedel af alle input. Det rejser spørgsmålet om den dybere tolkning af makro- og mikroanalyser vedrørende udvikling af boligbyggeriets produktivitet.
Indledning

Industrialisering gennem mekanisering og automatisering har gennem mange år været anset for at give store produktivitetsfordøle. Inden for byggeriet er det bl.a. sket i form af overflytning af produktion fra plads til fabrik. Alligevel har produktivitetsfremgangen i byggematerialeindustrien over de seneste 30 år tilsyneladende ikke påvirket det samlede boligbyggeris produktivitet markant og derved medvirket til en billiggørelse af dette.

Projektet har taget udgangspunkt i to af de mest udbrede og sejlivede myter om byggeriets produktivitet og kvalitet:

– Byggeriets produktivitet er ikke øget væsentligt gennem de seneste 30 år.
– Byggeriets standard og kvalitet har været stort set uændret over tid i modsætning til industriens.

Denne undersøgelses formål er at trænge bag om myterne og identificere årsager til, at produktivitetsudviklingen i boligbyggeriet anses for at være lav. Det gøres ved at udføre tre indbyrdes relationer analyser:

Denne undersøgelse, delanalyse 2, bygger primært på den opfattelse, at en produktivitetsudvikling lige så vel kan udmøntes i en forøget standard som i en lavere pris. Et væsentligt element i analysen har derfor været at undersøge ændringer i boligbyggeriets standard og undersøge mulighederne for at værdifastsatte dem.
Metode

Indledningsvist betragtes to tænkte situationer:

A. År for år opføres der en bygning, som principielt er identisk med den, der blev opført året før, men med tidssvarende produktionsmåder og under udnyttelse af nye komponenter, som eventuelt er industrielt fremstillede, men som teknisk set er ligeværdige med de hidtil benyttede (har samme byggetekniske ydeevne). Resultatet ville være bygninger, af samme værdi for brugeren.

 Den ændring i den pristalskorrigerede byggepris pr kvm, der kunne konstateres, ville direkte afspejle en produktivitetsændring, som kunne tilskrives ændringer i teknologi, herunder produktionsmåder.

B. År for år opføres der en bygning, der som udgangspunkt den samme bygning som i situation A, men nu tages der hensyn til kundernes øgede krav, fx til antallet af stikkontakter og til øget varmeisolering.

 Resultatet bliver en højere byggepris pr kvm end i situation A.

I de to situationer er byggeriet udført af den samme byggesektor med de samme teknologier, blot er der udført en lidt større opgave i den anden situation. Man vil derfor forvente, at produktivitetsudviklingen er den samme i de to situationer.

 Med dette udgangspunkt diskuteres nedenfor de produktivitetsmål, der sædvanligvis lægges til grund for debatten.

Makro- mikroanalyser

Delanalyse 1 (Larsen, 2006) tager primært sit udgangspunkt i makroanalyser baseret på statistiske oplysninger vedrørende den reale værditilvækst i sektoren i forhold til antallet af arbejdstimer. Det drejer sig primært om arbejdsproduktiviteten for byggesektoren, dvs. de udførende.

 Som illustreret i figur 1 er resultatet af denne makroanalyse et mål for produktiviteten af en (mindre) del af det, der udgør den samlede pris på et byggeri, idet såvel rådgiverydelser som byggematerialer indgår som inputfaktorer.

 Figur 1 illustrerer også en anden tilgang til studier af byggeriets produktivitet, nemlig at betragte bygningen som en vare. Her er udgangspunktet den enkelte byggesag – en mikroanalyse.

 Kort sagt vedrører makroanalysen altså den reale værditilvækst af en arbejdsindsats, her byggeriets udførende, i forhold til antallet af arbejdstimer, medens mikroanalysen vedrører prisen pr kvm. for den færdige bygning

 Spørgsmålet er så om de to type af analyser fører til samme resultat vedrørende produktivitetsudvikling. Det gør de ikke, og det kan illustreres ved at se på de to ovennævnte tænkte situationer, A, hvor standarden er uændret og B, hvor standarden øges.

 I makroanalysen vil resultatet ikke så meget afhænge af om det drejer sig om situation A eller B, men mere om hvilke dele af arbejdet, der i begge tilfælde flyttes fra byggeplads til fabrik, og især om de tilbageværende dele af arbejdsindsatsen udføres med samme produktivitet som de dele, der forsvinder fra byggepladsen. Over tid er der sket det, at flere komponenter fremstilles på fabrik, fx spær og facadeelementer. Det betyder, at makroanalysens mål for produktiviteten gælder for en aftagende del af byggeriet (Lar-
Sammenligninger over tid vanskeliggøres endvidere ved at byggesektorens teknologi og markedsområde over tid er ændret meget.

I mikroanalysen vil prisen pr kvm være større i situation B end i A. Produktivitetsudviklingen, målt som pris pr kvm., er altså mindre i situation B, blot fordi der er bestilt et større arbejde på de samme kvm.

Ud fra en umiddelbar betragtning er det ikke retvisende. Den øgede værdi, der kommer af at bygge i en højere standard, kommer ikke til udtryk.

Begge metoder er følsomme for udsving i andelen af developer-byggeri, idet fortjenesten her indgår i statistikken. Det betyder, at produktiviteten vil øges ekstra meget i perioder med en stor andel af developer byggeri, hvis der er mulighed for at opnå en stor fortjeneste.

De to former for analyser har altså hver deres svagheder og kan ikke forventes at give samme resultat, og det er derfor et problem at diskussionen om produktivitetsudviklingen i byggeriet ofte foregår uden nogen specifik henvisning til de to metoder og uden forbehold for de begrænsninger, der er omtalt ovenfor.

Projektets delanalyse 2, som beskrives her, har taget udgangspunkt i mikroanalysen, for hvilken der altså er et behov for at kunne korrigere produktiviteten, således at såvel højere værdi som lavere pris bidrager til fremgang i produktiviteten. Det fører naturligt til et behov for at udtrykke forskelle i oplevelse af værdi i kr., således at der i det mindste kan opstilles et produktivitetsmål angivet som "pris pr kvm", korrigeret for forskelle i værdi.

Der foreligger imidlertid ikke metoder, som anviser fremgangsmåder for en sådan korrektion.

skab), men der korrigeres ikke for det, ligesom spørgsmålet i øvrigt ikke gøres til genstand for nærmere analyser.

Indledningsvis kan det således konstateres at dokumentationen i det mindste er svag for den ene af de to myter, som projektet tager sigte på at undersøge: "Byggeriets produktivitet er ikke øget væsentligt gennem de seneste 30 år." Om den også er forkert, er det spørgsmål, der især tages op her i projektets delanalyse 2, idet der tages udgangspunkt i en analyse af udviklingen i boligbyggeriets standard med sigte på en korrektion af resultatet af mikroanalyser.

Kilder til produktivitetsforbedringer

Tre hovedkilder til produktivitetsforbedringer i boligbyggeriet betragtes:

A. En reduktion i resурсeforbruget (og dermed pris), som følge af bedre organisation, højere grad af anvendelse af industrielt fremstillede komponenter eller bedre udnyttelse af arbejdskraften som følge af uddannelse eller bedre materiel
B. En øget værdi, som følge af at der benyttet en løsning som teknisk set anses for bedre end den tilsvarende løsning i det byggeri, der sammenlignes med.
C. En bedre tilpasning til det behov brugeren har, fx ved at en løsning, som brugeren ikke værdsætter, er erstattet med en løsning til samme pris, som brugeren i højere grad værdsætter.

De benyttede begreber standard, kvalitet og værdi anvendes i almindelighed i flere betydninger. Derfor præciseres her de betydninger i hvilke de anvendes efterfølgende:

Byggeteknisk standard

Kvalitet

I nogle faggrupper anvendes begrebet kvalitet i en meget bred betydning: "Bygningen har mange kvaliteter". I vejledningen om evaluerings af kvalitet i byggeriet [1], omfatter begrebet således bl.a. det, der overfor er defineret som standard. I det følgende benyttes begrebet kvalitet derimod i den betydning, det har i standarder, der beskæftiger sig med kvalitetssikring. Det betyder, at kvalitet er fravær af fejl og mangler.

Hvad enten byggeriet er af høj eller lav standard, kan man således forestille at få det leveret i en høj kvalitet. Højere eller lavere kvalitet i denne betydning anses ikke for væsentlig for delanalyse 2, medens udbedring af fejl og mangler naturligt indgår i resurseforbruget, og dermed får indflydelse på produktiviteten (punkt A).
Værdi
Begrebet pris kan i nogen udstrækning opfattes som en objektiv størrelse, der principielt lader sig dokumentere, fx i form af produktionspris eller salgspris. Værdi opleves derimod individuelt, men kan i nogen grad måles indirekte på prisen. Fx vil løsninger (fx flisebeklædning i badeværelser), som har en højere standard og værdsættes af brugeren sædvanligvis have en højere pris. I nyt byggeri ses det ofte, at flisebeklædningen er begrænset til områder af væggen med risiko for vandbelastning, medens den øvrige del af badeværnelsesvæggene får en anden og (og billigere) overfladebehandling. Det kan formentlig tolkes på den måde, at de fleste brugere ikke tillægger komplett flisebeklædning en værdi som modsvarer produktionsprisen. Det betyder, at hvis en dyrere vare skal sælges, må i det mindste køberen tillægge den en tilsvarende højere værdi.

Prisen for at få opført et byggeri afspjeler i første omgang ressourceforbruget, men som argumenteret er der en nær sammenhæng til den værdi, som almindeligt opleves. I nogle tilfælde viser en efterfølgende efterspørgsel så, at værdien kan være betydeligt større, fx som følge af en vellykket arkitektur.

Målemetode

Som argumenteret ovenfor kan Værdien af en bedre byggeteknisk standard i de fleste tilfælde sættes til den merpris, der må betales for løsningen af den højere standard i forhold til løsningen af den lavere standard. Denne forskel kan så benyttes til modifikation (korrektion) af produktivitetsmål angivet som "pris pr kvm".

En sådan værdifastsættelse af byggetekniske standard skal vurderes i lyset af at:

- Den forudsætter udvikling af en metode til fastsættelse af den omtalte mer pris
- Den yder ikke retfærdighed over for vellykket arkitektur og andre oplevede kvaliteter, som ikke så direkte er et resultatet af øgede investeringer
- Visse håndværksfremstillede løsninger kan kræve en særlig vurdering. Det er løsninger, der i vid udstrækning er erstattet af industriel Fremstillede løsninger med samme tekniske ydeevner, men hvor den håndværksmæssige løsning, der ville være meget dyr at fremstille nu, har særlige kvaliteter, som er værdsat.

Som udgangspunkt er den analyse, som beskrives efterfølgende, baseret på en kortlægning med henblik på at påvise og kvantificere den stigning i byggeteknisk standard, der har fundet sted over tid.

Ændringer, som ikke finder sted med henblik på at øge den oplevede standard (fx udvikling i teknologien for frembringelse af råhuset) medtages ikke, idet de forudsættes at sigte på frembringer af produkt i en ligeværdig standard (til en lavere pris). For den type ændringer kræves ingen korrektion, idet eventuelle produktivitetsgevinster forudsættes at indgå i sæd-
vanlige produktivitetsanalyser og give et retvisende bidrag til produktivitets-
udviklingen.

På denne baggrund er det valgt at gennemføre delanalyse 2 i henhold til
følgende hovedpunkter, som er udarbejdet med fokus på at skaffe valide og
pålidelige data med en realistisk arbejdsindsats:

- Der defineres en afgrænsning mellem de elementer, der kan give anled-
ning til korrektion for ændret byggeteknisk standard og de, der ikke kan.
- Det empiriske grundlag for beskrivelsen af ændringer skaffes fra bygges-
sagsdokumenter og besigtigelse af et antal byggesager, se nedenfor ved-
rørende udvælgelse af cases.
- Materialet gennemgås, og objektive forskelle i standard kortlægges, be-
skrives, kvantificeres og værdisættes.
- Væsentlige elementer i udviklingen i byggeteknisk standard illustreres.

Med baggrund i de tilvejebragte data diskuteres to af hovedprojektets grund-
læggende hypoteser:

- hypotesen H1, som siger at produktivitetsgevinsten bl.a. er omsat i en hø-
jere standard
- hypotesen H2, som peger på øget produktvariation som en årsag til redu-
ceret produktivitet.

Afgørelse af bidrag til korrektion for tilvækst i byggeteknisk standard
De ændringer i byggeteknisk standard, der indgår i analysen, kan (hos eje-
ren/brugeren) begrundes i:

- mode
- komfortmæssig forbedring
- gunstig drifts- og vedligeholdelsesøkonomi.

Nedenfor er oplistet eksempler på de bygningsdele, der tages i betragtning.
Ændringer i standard kan ske i form af en ændring (forbedring) af kendte
bygningskomponenters ydeevne samt fremkomsten / fjernelsen af kompo-
nenter. I parentes angives et forslag til kvantificering.

Eksempler på modebetingede ændringer:

- naturstensfliser i stedet for lerfliser (antal m2, samt materialebeskrivelser).

Eksempler på komfortbetingede ændringer (nogle giver også bedre drifts-
økonomi):

- centralvarme og bedre isolerede bygninger med bedre "indeklima" til føl-
ge (varmekilde, U-værdier)
- større køkkener og badeværelser med mere teknik (ventilation, gulvvar-
me, etc.), (kvaratmeter pr kvm bebyggelse, kvadratmeterpris, evnt. antal
køkkenelementer, antal meter køkkenbord))
- større vinduesarealer (kvm), solafskærmning (ja/nej)
- altaner (ja/nej)
- flere el-installationer, stikkontakter, lampesteder (antal pr kvm)
- radiator-termostater (ja/nej)
- klimastyring, køling (ja/nej)
- tv/-telefon/-computer-netværk (ja/nej)
- hårde hvidevarer (ja/nej)
- elevatorer (ja/nej).

Eksempler på driftsøkonomibetingede ændringer:
– øget isolering (k-værdi)
– radiatortermostater (ja/nej)
– kobledes vinduer, termoruder, energiruder (k-værdi, antal kvm)
– kondenserende gaskedler med klimastyring (måske ikke relevant for etageejendomme)
– solvarme, varmegeindvinding af luft (ja, nej)
– ventilationsanlæg (ja/nej).

Opmærksomheden rettes i øvrigt mod løsninger/produkter, som kræver væsentlig mindre vedligeholdelse og har en relativ lang levetid. Det kan være malingsstyper, tapeter, laminater til bordplader og skabe.

Endelig overvejes om det er muligt at medtage relevante ændringer, som det måtte vise sig vanskeligt at værdisætte. Det kunne være:

– større valgfrihed kvantificeret ved antal varianter (byggematerialer, lejlighedspakker)
– kvalitetshåndværk, som relativt let kan registreres, men hvor principper for værdifastsættelsen ikke er afklaret?

Værdifastsættelsen

Der anlægges følgende synsvinkel:

– Med baggrund i ovennævnte eksempler udarbejdes for det konkrete byggeri en liste med løsninger, som bidrager til tilvækst i byggeteknisk standard.
– De dele af bygningen, som ikke er omfattet af listen, tilskrives uændret standard, og en eventuel udvikling i deres (faste) pris afspejler ændringer i produktiviteten.

Hvor der foreligger driftsbesparelser, fx mindre varmetab, kunne det være en mulighed at kapitalisere værdien af besparelsen. Det forekommer imidlertid ikke relevant at henføre den besparelse til værdier, som er skabt af byggeprocessen. Derimod medtages den merpris, som det kostet at producere en komponent med en bedre isolering.

Prissætningen i nutidspriser af byggetekniske løsninger i gammelt boligbyggeri er ikke uproblematisk, idet visse produkter/ydelser ikke længere er på markedet. Der anvendes derfor følgende principper:

1) Materiale-ressourcer:
 i tilfælde af produkter med samme kvalitet/funktionalitet i hele tidsperioden (f.eks. isoleringsmateriale) sammenlignes direkte ved mængde og enhedspris
 når kvalitet/funktionalitet ikke længere produceres som standardvare (f.eks. enkeltlagssinduer i simpel ramme) sammenlignes i form af en ekspertvurdering

2) Arbejdskraft bestemmes og prissættes efter timeforbruget:
 – direkte ved mængde i tilfælde af at samme håndtering er benyttet gennem tiderne
 – ved en ekspertvurdering når der er afvigelser i håndtering (nye vinduestyper, andre isoleringstyper etc.).

I øvrigt henvises til notatet: Indeksberetning i Danmarks Statistik (Danmarks Statistik, 2005).
Udvælgelse af cases

Følgende er valgt som grundlag for udvælgelse af cases:

- et boligbyggeri fra 1953 - 1957 opført efter traditionel byggeskik
- et boligbyggeri fra 1968 - 1972 opført som industrielt byggeri

Der tages udgangspunkt i tegninger og byggeregnskaber, og byggerierne skal have gennemgået så moderate moderniseringer, at det oprindelige byggeri stadig kan studeres.

Byggerierne er valgt ud fra en liste, som KAB har stillet til rådighed om bygninger, der bedst svarede til de krav, der er opstillet ovenfor i afsnittet om udvælgelse af cases. Bruttolisten omfattede 10 bebyggelser med 3-4 værelses lejligheder (70-100 kvm) fra de relevante tidsperioder. Fra listen valgtes de ældre byggerier, som havde undergået mindst modernisering. De 2 nyeste byggerier (fra 2005) var de eneste nye på bruttolisten. Grunden til at de begge er medtaget, er at regnskaberne for det byggeri, der i første omgang blev udvalgt, blev stærkt forsinket, hvorfor det blev besluttet at inddrage det andet. På det tidspunkt var der foretaget registreringer vedrørende det første byggeri, og det blev besluttet at lade det forblive i undersøgelsen.

På det grundlag gives nedenfor en sammenligning - kvalitativ og kvantitativ -af værdiindholdet på en række punkter.

De fire boligbyggerier

En systematisk præsentation af oplysninger om de enkelte byggerier ses i bilag 2 "Indsamlede oplysninger". Nedenfor gengives de væsentligstede træk vedrørende bygningsform, antal boliger og byggeteknik.

Herman Bangs Plads

Byggeriet fremstår som en boligblok med 5 etager og kælder. Der er 18 boliger fordelt på 2 opgange. Der er butikker i stueetagen. Byggeriet er opført i 1957 som traditionelt muret byggeri med hulstensdæk og tegltag. Bygningsbredden er 10 m.

Sjælør Boulevard

Det er et meget stort byggeri bestående af to blokke med 4 etager og to blokke med 8 etager, i alt 544 boliger. Det er opført i 1970 som muret byggeri med hulstensdæk og tegltag. Bygningsbredden er 15.41 m.

Emaljehaven (Marstrands Have)

Havnestaden

Sammenligning af byggetekniske løsninger

De fire byggeriers værdiindhold er sammenlignet på en række udvalgte parametre. Den detaljerede beskrivelse ses i bilag 3 "Sammenligning af løsninger" som beskriver egenskaber vedrørende facader, vinduer, varmetab, badeværelser, køkkener, altaner, installationer, ventilation og overflader.

I det følgende fremhæves de væsentligste træk fra denne sammenligning i form af beskrivende kommentarer og en række data vist i tabel 1. Beskrivelserne er for udvalgte emner understøttet af fotografier, se bilag 4 "Fotodokumentation".

Boligareal

Mest markant er det, at 1970-bebyggelsens samlede areal er ca. 10 gange større end for det næststørste byggeri. Derimod er de to nye byggerier kun lidt større end 1957-byggeriet, som er det mindste. At de betragtede boligerets nettoarealer er næsten ens skyldes, at det var en parameter for valget af boliger til nærmere studier.

Det ses at forholdet mellem netto- og bruttoarealer er stort set ens alle bebyggelserne.

Etagehøjde

Etagehøjderne er stort set ens, se tabel 1.

Facadelængde/Bygningsbrede

Forhold facadéareal/ vinduespartier

Vinduesarealerne er i. 1957-byggeriet øget i byggeriet fra 1970 med den større bygningsbrede. De to byggerier fra 2005 er meget forskellige på dette punkt og har vinduesarealer hhv. klart større og klart mindre end de to ældre byggerier.

Større vinduesarealer anses for et gode, men som det fremgår, er der ikke tale om en ensidig positiv udvikling.
Tab. 1. Oversigt over nøgleparametre i de fire bebyggelser.

<table>
<thead>
<tr>
<th></th>
<th>Herman Bangs Plads</th>
<th>Sjælør Boulevard</th>
<th>Emalje-haven</th>
<th>Havnestaden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opført</td>
<td>1957</td>
<td>1970</td>
<td>2005</td>
<td>2005</td>
</tr>
<tr>
<td>Boligareal - bebygelsen</td>
<td>m² 1.273</td>
<td>47.344</td>
<td>5.800</td>
<td>2.761</td>
</tr>
<tr>
<td>Lejlighed netto</td>
<td>m² 68,2</td>
<td>70,9</td>
<td>67</td>
<td>73</td>
</tr>
<tr>
<td>- brutto, ex. opgang og altan</td>
<td>m² 84</td>
<td>81,9</td>
<td>78,3</td>
<td>83,2</td>
</tr>
<tr>
<td>- brutto, oplyst</td>
<td>m² 90,2</td>
<td>90,0</td>
<td>87,3</td>
<td>94,3</td>
</tr>
<tr>
<td>Etagehøjde</td>
<td>m 2,94</td>
<td>2,90</td>
<td>2,90</td>
<td>2,87</td>
</tr>
<tr>
<td>Facadelængde</td>
<td>m 16,75</td>
<td>13</td>
<td>13,5</td>
<td>13,27</td>
</tr>
<tr>
<td>Bygningsbrede</td>
<td>m 10</td>
<td>15,41</td>
<td>11,88</td>
<td>11,87</td>
</tr>
<tr>
<td>Facadeareal x.vinduespartier</td>
<td>m² 36,2</td>
<td>22,3</td>
<td>29,6</td>
<td>14,9</td>
</tr>
<tr>
<td>- af brynsting</td>
<td>m² 3,6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Areal af vinduespartier</td>
<td>m² 13</td>
<td>15,4</td>
<td>9,6</td>
<td>23,2</td>
</tr>
<tr>
<td>Varmetab pr. kvm. facade</td>
<td>WK m² 1,58</td>
<td>1,62</td>
<td>0,62</td>
<td>0,97</td>
</tr>
<tr>
<td>- fra lejlighed gennem facader</td>
<td>WK 77,7</td>
<td>61,2</td>
<td>24,1</td>
<td>37,1</td>
</tr>
<tr>
<td>- pr. netto-kvm. lejlighed</td>
<td>WK m² 1,14</td>
<td>0,86</td>
<td>0,36</td>
<td>0,51</td>
</tr>
<tr>
<td>Køkken, areal</td>
<td>m² 7,3</td>
<td>10,4</td>
<td>7,8</td>
<td>17,4</td>
</tr>
<tr>
<td>- bordplade incl. vask og komfur</td>
<td>m 2,6</td>
<td>3,4</td>
<td>2,4*</td>
<td>3,6</td>
</tr>
<tr>
<td>- fliseareal</td>
<td>m² 1,2</td>
<td>0</td>
<td>0,8</td>
<td>0</td>
</tr>
<tr>
<td>Badeværelse, areal</td>
<td>m² 3,1</td>
<td>3,19</td>
<td>4,1</td>
<td>4,9</td>
</tr>
<tr>
<td>- fliseareal</td>
<td>m² 11,6</td>
<td>11,3</td>
<td>4,8</td>
<td>6,4</td>
</tr>
</tbody>
</table>

Installationer

<table>
<thead>
<tr>
<th></th>
<th>Nej</th>
<th>Ja</th>
<th>Ja</th>
<th>Ja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stikkontakter</td>
<td>antal 14</td>
<td>20</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>Lampesteder</td>
<td>antal 9</td>
<td>11</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>Stik til opvaske-/vaskemask.</td>
<td>Ingen</td>
<td>Opvask</td>
<td>Alle</td>
<td>Alle</td>
</tr>
<tr>
<td>Tlf., TV, IT</td>
<td></td>
<td>Tlf., TV</td>
<td>Alle</td>
<td>Alle</td>
</tr>
<tr>
<td>Altan, areal</td>
<td>m² 0</td>
<td>4,5</td>
<td>5</td>
<td>8,1</td>
</tr>
<tr>
<td>Elevator</td>
<td>nej</td>
<td>nej</td>
<td>ja</td>
<td>ja</td>
</tr>
</tbody>
</table>

*) plus 1,2 m rullebord

Varmetab, facader

Varmetabet gennem facaderne er opgjort tilnærmet som produktet af de enkelte bygningsdeles U-værdier og de respektive arealer, dvs. facadearealer for de aktuelle lejligheder.

Der er en klar tendens i at de to nye byggerier har et lavere varmetab end de ældre byggerier. Varmetabet for de to nye byggerier udgør hhv. 38 % og 60 % af varmetabet for det ældste byggeri, når der tages hensyn til forskellen i facadelængde. Når der tages hensyn til den øgede facadelængde fås imidlertid ikke nogen reduktion i varmetabet for 1970-byggeriet ift. 1957-byggeriet.

Alt i alt kan det konkluderes, at hvad angår facadeløsninger er der en klar positiv udvikling i standarden vedrørende varmeisolering.

Køkkener

Køkkenarealerne er ikke entydigt afgrænset i de to nyeste byggerier, idet de er integrerede med stue-arealerne. Længden af køkkenbordpladen indikerer dog, at arbejdspladsen er blevet større. I det ældste byggeri og i ét af de nyeste byggerier er der fliser over køkkenbord op til overskabe. I det andet nye byggeri er der ingen fliser.

Medens der således spores en tendens til større køkkener, er der ikke nogen klar tendens hvad angår arealer af overflader med fliser.
Badeværelser
Badeværelsernes areal er klart vokset. I de to ældre bebyggelser er der fli- ser på undervægge. I de nye byggerier er der fliser til loft i brusekabiner og fliser eller stort spejl ved håndvasken. Flisearealet er væsentligt reduceret.

Selv om arealer beklædt med fliser er reduceret, så er de opretholdt, hvor funktionskrav tilsiger det, og med en klart øget rumstørrelse anses badevær- relsernes standard at være øget.

Installationer
I det ældste byggeri er der ikke noget ventilationsanlæg.
Antallet stikkontakter og lampesteder klart er lavest i det ældste byggeri. Derefter ser der ikke ud til at have været nogen væsentlig tilvækst.
Med hensyn til stik til opvaske- og vaskemaskine, samt tlf., TV og IT er der sket en klar udvikling. Det er dog uklart i hvilken udstrækning også de hårde hvidevarer indgår i byggeregnskaberne.

Altaner
Altanarealerne er øget over tid, se tabellen.

Elevatorer
Der er kun elevatorer i de to nyeste byggerier. For Havnestaden er oplyst at håndværkerudgiften til elevatorer til 30 boliger andragr kr. 1.339.000,- sva- rende til ca. kr. 500,- pr. kvadratmeter bruttoareal. Heri indgår ikke den om- kostning, der er forbundet med at etablere selve elevatortårnene.

Bedre bygningsfysiske løsninger
I de nyere byggerier er den iboende bygningsfysiske standard blevet forbed- ret på en række områder. Der gælder:

- brandsikkerhed
- lyd
- indeklima
- vådrumsmembraner (de 2 nye byggerier har færdige badeværelses- moduler)
- overflader på køkkeninventar
- øvrige overflader.

Bedre overflader og mindre fugtbelastning kan betyde, at levetiden er blevet forlænget og drifts- og vedligeholdelsesudgifterne er lavere. Der er dog ikke kendskab til om nyere byggerier har en bedre drifts- og vedligeholdelses-økonomi, fx som følge af en højere etableringsomkostning (totaløkonomi).

Industriel finish

Fællesanlæg
Det har ikke indgået i undersøgelsen om nyere byggeri indeholder fællesan- læg (fælleshus, lejepladser, parkeringsanlæg) i højere eller mindre grad end ældre, ligesom der ikke er taget hensyn til kravet om postkasseanlæg i nye bebyggelser.

Mangfoldighed af byggetekniske løsninger
I forhold til byggeriet fra 1972 besiddes de nyere byggerier en større mang- foldighed i produktsoortiment for så vidt angår indretning, altaner, vinduesty- per osv. Denne mangfoldighed resulterer i kortere fremstillingsserier og me-
re logistik pr. kvadratmeter bolig og øger prisen, men til gengæld opnås en øget mulighed for opfyldelse af individuelle ønsker til byggeriets udtryk.

Mere varierede bebyggelser

De nyere byggerier fra 2005 indeholder langt færre boliger end 1970-bebyggelsen, hvilket i sig selv øger fremstillingsomkostningen pr. kvadratmeter bolig (mindre stordriftsfordele). Til gengæld øges oplevelsesværdien, idet det bliver lettere at opnå varierede boligområder.

Værdi af øget standard

Her betragtes de løsninger, hvor de indsamlede data tages som udtryk for en tendens til øget standard, som berettiger en øget pris, se tabellen.

Værdierne er fastsat efter samråd med erfarne byggefolk hos MT Højgård A/S og skal ses som et skøn over den merpris, der ligger i, at indbygge den angivne højere standard. Hvor udgangspunktet for dette skøn er pris pr. lejlighed, er der divideret med 80 for at få det angivne beløb pr kvm.

<table>
<thead>
<tr>
<th>Tabel 2. Værdi af øget standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ændringer</td>
</tr>
<tr>
<td>1. Bedre varmeisolering (primært facader)</td>
</tr>
<tr>
<td>2. Større badeværelser</td>
</tr>
<tr>
<td>3. Større altaner</td>
</tr>
<tr>
<td>4. Elevatorer</td>
</tr>
<tr>
<td>5. Installationer</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>6. Flere hårde hvidevarer</td>
</tr>
<tr>
<td>7. Bedre bygningsfysiske løsninger</td>
</tr>
<tr>
<td>8. Øget grad af industriel finish</td>
</tr>
<tr>
<td>9. Øget mangfoldighed i udbudet af bygetekniske løsninger</td>
</tr>
<tr>
<td>10. Mere varierede (mindre) bebyggelser</td>
</tr>
</tbody>
</table>

Ad 1) Bedre varmeisolering

Det angivne beløb er et meget groft skøn, fordi de løsninger, der sammenlignes, teknisk set er meget forskellige. I det ældste byggeri er fx tale om en massiv murstensvæg, medens de nye løsninger er opbygget af flere, spinkle bygningsdele, hvilket ikke kun medfører de direkte materialeudgifter fx til isolering, men også omkostninger som følger af at løsningerne bliver mere komplicerede med hensyn til statik, samlinger og forbindelser samt fugt- og lydforhold.

Det reducerede energitab giver naturligvis anledning til en løbende besparelse til opvarming over hele bygningens levetid. Denne besparelse anses, som tidligere nævnt, ikke for relevant i denne sammenhæng og er ikke forsøgt opgjort.
Ad 7)
Ud over membraner i badeværelser og ydervægge og lufttæthed i fuger er der tale om øgede dimensioner af lejlighedsskel og dæk.

Ad 8)
En række overflader, specielt i hylder i skabe, gulvbehandling, bordplader fremstår i en højere standard, men det er vanskeligt at angive en tilsvarende merpris.

Ad 9) og 10)
Den større mangfoldighed og variation har især en omkostning hidrørende fra mindre produktionsserier og mere logistik. Der er ikke fundet nogen enkel måde til at opgøre disse meromkostninger, men at de kan have en betydelig størrelse fremgår af følgende udsagn:

En enkelt af meromkostningerne, nemlig til byggepladsudgifter ved at gennemføre et byggeri som 5 enheder á 60 lejligheder frem for ét med 300 lejligheder beløber sig, ifølge sagkyndige, til 100 – 200 kr pr kvm.

Målinger på gentagelsesefekten viser, at en fordobling af styktallet reducerer omkostningerne med 6-12% (Gottlieb and Haugbølle, 2010).

Det forlyder, at der tilsyneladende er betydelige besparelser ved at benytte sig af paralleludbud, som netop nu afprøves i praksis.

Resultatet set i relation til projektets hypotese

Det resultat understøtter den del projektets hypotese, H1, som siger, at der over de seneste 50 år er opnået en øget byggeteknisk standard. Over den betragtede periode anses bidraget som minimum at være ca. 20% af håndværkerudgifterne.

Analysen giver ikke mulighed for, med samme nøjagtighed, at fastsætte værdien af punkterne 9 og 10, om øget mangfoldighed i udbuddet af byggetekniske løsninger samt om mere varierede (mindre) bebyggelser. Ovenstående betragtninger giver dog grundlag for en opfattelse af værdien af denne variation, som det er udtrykt for, har en værdi, som er lige så stor om ikke større. Omvendt betyder det, at en konsekvent udnyttelse af gentagelsesefekten og en reduktion af antallet af varenumre, der tages i betragtning, rummer et potentiale for produktivitetsforbedringer, som bør analyseres nøjere.

Det har således ikke været muligt med samme nøjagtighed at kvantificere hypotesen H2, som peger på øget produktvariation som en årsag til reduceret produktivitet, men analysen styrker denne hypotese.
Byggepriserne over tid

Tabel 3 viser håndværkerudgiften pr. kvadratmeter som oplyst i byggeregnskaberne eller i skema C. Håndværkerudgiften omfatter såvel materialer som arbejdskraft, og de kan ikke umiddelbart adskilles. Det betyder, at analysen ikke bidrager til belysning af projektets hypotese, H4, som peger på, at byggevarernes andel af håndværkerudgifterne ikke har ændret sig i de seneste 30 år.

Af tabellen fremgår også håndværkerudgiften pr. kvadratmeter for de 4 byggerier i 2005-kroner, når denne udregnes på basis af forbrugerprisindekset. For Havnestaden er vist tal for både skema B og skema C, hvor forskellen ikke skyldes, at byggeriets anskaffelsespris er ændret, men at det besluttes at udføre byggeriet i total-enterprise (skema C9), hvilket bl.a. betyder, at detailprojektering bliver en håndværkerydelse.

Tabel 3. Byggepriser ex. moms

<table>
<thead>
<tr>
<th>Håndværkerudgift</th>
<th>Herman Bangs Plads</th>
<th>Sjælør Boulevard</th>
<th>Emaljehaven</th>
<th>Havnestaden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datids-kroner</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>378*</td>
<td>907**</td>
<td>11.518</td>
<td>12.552</td>
<td>14.393</td>
</tr>
</tbody>
</table>

*) Byggeregnskab 1957
**) Byggeregnskab 1972
***) Reguleret via forbrugerprisindekset

Det ses at håndværkerudgiften i 2005-kroner kun stiger svagt fra 1957 til 1972. Håndværkerudgiften i det nyeste byggeri er derimod øget med op mod 200% (skema B) i forhold til det ældste byggeri.

Det er en påfaldende stor udvikling, der ses i den forbrugerindeksregulerede pris.

Den relativt moderate udvikling, der er tale om i den første periode kan måske forklares ved at 1970-er byggeriet omfatter et meget stort antal boliger sammenlignet de tidligere og senere byggerier. Tilbage står dog, at prisen over den 50-årige periode stort set er tredoblet, og at værdien af den øgede standard, som den er opgjort i det foregående afsnit, kun forklarer en lille del af den stigning.

En mulig forklaring er, at rådgiverbranchen i øget grad er beskæftiget med opgaver, som ikke direkte har med byggesager at gøre. Det gælder fx huseftersyn og forskellige former for analyser. Herved påvirkes Danmarks Statistiks tal af aktiviteter, som ligger uden for de opgaver, som indgår i mi-
kroanalyser. Foreningen af Rådgivende Ingeniører oplyser, at man er opmærksom på, at en sådan forskel eksisterer.

Det rejser igen spørgsmålet om den dybere tolkning af makro- og mikroanalyser.

Tabel 4. Byggepriser (% af anskaffelsesprisen moms)

<table>
<thead>
<tr>
<th></th>
<th>Herman Bangs Plads</th>
<th>Sjælør Boulevard</th>
<th>Emaljehaven</th>
<th>Havnestaden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grund</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10,6</td>
<td>12,1</td>
<td>19,9</td>
<td>13,0</td>
</tr>
<tr>
<td></td>
<td>14,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Håndværkerudg.</td>
<td>67,9</td>
<td>59,7</td>
<td>60,8</td>
<td>67,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>78,5</td>
</tr>
<tr>
<td>Rådgivning</td>
<td>4,8</td>
<td>6,1</td>
<td>6,1</td>
<td>1,3</td>
</tr>
<tr>
<td>Øvrige Omkostninger</td>
<td>16,7</td>
<td>22,0</td>
<td>13,2</td>
<td>12,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,6</td>
</tr>
</tbody>
</table>
Konklusion

Projektets hovedresultater er:

– udvikling af en metode til synliggørelse af værdien af øget byggeteknisk standard.
– anvendelse af metoden viser, at over de seneste 50 år kan værdien af en øget byggeteknisk standard opgøres til omkring 20 % af håndværkerudgifterne.
– der er i over 50 år fundet en næsten tredobling af den forbrugerindeksregulerede pris på boligbyggeriet.
– værdien af den øgede standard forklarer kun en lille del af stigningen, og efter korrektion for øget værdi af byggeteknisk standard er den forbrugerindeksregulerede pris på boligbyggeriet mere end fordoblet - altså et betydeligt fald i produktiviteten set i forhold til forbrugerprisindekset. Det leder til et mere fundamentalt spørgsmål om hvad der styrer omkostningsudviklingen i boligbyggeriet.
– analysen giver anledning til at rejse spørgsmålet om at øget mangfoldighed i udbuddet af byggetekniske løsninger samt om at mere varierede (mindre) bebyggelser repræsenterer en meget betydelig værdi, som omvendt også rummer et potentiale for produktivitetsgevinster.
Litteratur

Bilag 1. Tidslinje - byggeriets udvikling

På den følgende side er en række markante træk i byggeriets udvikling siden 1945 sat op en tidsramme.

Signaturer:
BR = bygningsreglement KS = kvalitetssikring
BM = Boligministeriet BSF = byggeskadefonden
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mål</td>
<td>Imødegå boligmangel</td>
<td>Modreaktion</td>
<td>Mødegå oliekris</td>
<td>Produktivitet</td>
<td>Digitalisering</td>
<td>Imødegå oliekris</td>
<td>Renovering</td>
</tr>
<tr>
<td>Nøgle-problemer</td>
<td>Mangel på arbejdskraft/ Udvikle teknologi</td>
<td>Skabe marked</td>
<td>Tid/Budget</td>
<td>Energobesparelse</td>
<td>Procesudvikling</td>
<td>Kvalitet</td>
<td></td>
</tr>
<tr>
<td>Problemløsningsstrategier</td>
<td>SBI og BM etableres</td>
<td>Modularisering</td>
<td>Montage-cirkulære</td>
<td>Fast tid/pris og fasemodel</td>
<td>Tæt-lav</td>
<td>Energipolitik</td>
<td>KS-cirkulære og BSF</td>
</tr>
<tr>
<td>Løsningskrav</td>
<td>BR66</td>
<td>BR72 og AB72</td>
<td>BR77</td>
<td>BR82</td>
<td>BR95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teorier</td>
<td>Taylorisme/masseproduktion</td>
<td>Small is beautiful</td>
<td>Porters diamant</td>
<td>Lean mv</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testprocedurer</td>
<td>Tidsstudier</td>
<td>Varmetab</td>
<td>KS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Designmetoder og -kriterier</td>
<td>De store planer</td>
<td>Energobesparelse</td>
<td>Småskala</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brugerpraksis</td>
<td>Udflytning</td>
<td>Medbyg</td>
<td>Alternative boformer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substitution af</td>
<td>Håndværk</td>
<td>Masseproduktion</td>
<td>Boligsociale problemer</td>
<td>Nybyggeri</td>
<td>2D og papir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eksemplariske artifakter</td>
<td>Bellahøj</td>
<td>Høje Gladsaxe, Gadekærret, Tingården, Galgebakken</td>
<td>Casa Nova</td>
<td>Egebjerggård</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Herman Bangs Plads

Beskrivelse
Opført 1957
Boligblok med 5 etager og kælder
Bygningsbredde 10.00 m
18 boliger fordelt på 2 opgange
Butikker i stueetagen
Muret byggeri med hulstensdæk
Tegltag
4-rums-lejlighed, Type 90.2 m²
Målt netto 68.2 m², brutto 84 m² excl. opgang.

Udført renovering
I 1982 er foretaget forbedringer af brystningers og vinduers isoleringsevne.
I 4-årig periode indtil 2000 er alle siddebadekar udskiftet med brusekabiner.
I 4-årig periode indtil 1998 er etableret nye køkkener.

Facader
1½-stens massiv ydermur plus indvendig ½-stens mur af klinkerbetonsten.
U-værdi = 1.0 W/m²K.
Brystninger er 1-stens massiv mur isoleret med 2.5 cm klinkerbetonplader.
U-værdi = 2.5 W/m²K
Brystningsareal: 3.6 m²
Etage-højde: 2.94 m
Samlet facadelængde 16.75 m.

Vinduer
Karme og poster 2" x 5" træ
Løsholter 2½" x 5" træ
Udføres med diverse noter og kehler
Koblede vinduer med forsatsrammer, dog ikke i overrammer 35 x 133 cm
3 stk. tre-rammede vinduer 133 x 133 cm
U-værdi = 2.2 W/m²K ved forsatsrammer
U-værdi = 4.1 W/m²K uden forsatsrammer

Altandørspartier
Karme 2½” x 5” træ
Bundstykke af egetræ
Koblede vinduer med forsatsrammer, dog ikke i overrammer og ikke i side-

ruder.
1 stk. altanparti mod gade 205 x 223 cm med dobbelt dør i alt 115 x 188 cm
og 2 stk. sidevinduer 45 x 188 cm og overramme 205 x 35 cm
1 stk. altanparti mod gård 133 x 223 cm med dobbelt dør i alt 133 x 188 cm
og overramme 133 x 35 cm uden sidevinduer
U-værdi = 2.2 W/m²K ved forsatsrammer
U-værdi = 4.1 W/m²K uden forsatsrammer.
Altaner
Franse

Badeværelser
12 rækker hvide 15x15 cm fliser
Terrazzo-gulv
Toilet, håndvask, siddebadekar udmuret og beklædt med fliser
Netto badeværelse 3.1 m²

Køkkener
180 cm køkkenbord 1½" træ med underskabe, skabssider, hylder, hævet bund og forstilling af 1" træ. 3 glatte låger af ¾" rammer med 4mm krydsfiner på begge sider.
80 cm gasbord med forsønket terrazzoplade, underskab og 2 låger.
Overskabe l=1.6m, h= 1.2m, skrå forside, nederst åben hylde, herover 3 skydelåger af råglas.
3 rækker hvide 15x15 cm fliser over køkkenbord, 4 rækker over gasbord.
Skurelister.
80x60 cm højt spisekammerskab med 2 glatte låger, hylder og overskab.
60x60 cm kosteskab med glat låge og 5 skuffer, hylder og overskab.
(Ingen køleskab)
Netto køkkenareal 7.3 m².

Gulve
64 m² Standard kvalitet bøgegulvbrædder Junckers 1", 6 brædder i hvert stød, synlig sømning, lagt på 2" x 2" strøer i 70 cms afstand på 1 cm tykke 10 x 10 cm brikker af asfaltkork.

Skabe i øvrigt
80x50 cm garderobeskab med overskab, dobbeltlåger, udført som køkken-skabe dog hylder af sammenlimet træ.

Opvarmning
Golf-radiatorer med haner
5 radiatorer.

El mv.
I alt 9 lampesteder, 14 stikkontakter
Hårde hvidevarer? ingen tilsyneladende
Ingen TV-, telefon og it-stik.

Ventilation
Aftrækskanaler.

Elevator
Ingen.
Sjælør Boulevard

Beskrivelse
Opført 1970
2 blokke med 4 etager og 2 blokke med 8 etager, i alt 544 boliger
Bygningsbredde 15.41 m
Muret byggeri med præfabrikerede betondæk
Paptag på træunderlag med fald.
3-rums-lejlighed, Type 90.05 m²
Netto 70.9 m² målt brutto 81.9 m² excl. opgang.

Udført renovering
I 1988 er taget renoveret og alle vinduer malerbehandlet.
I 1998 blev alle vinduer udskiftet.
I 2005 udskiftedes radiatoranlægget.

Facader
Langsgående facader er massivt uisolert 1½-stens murværk
U-værdi = 1.5 W/m²K
Gavl 47 cm hulmur, 1 sten bagmur og ½-sten formur
Tvær- og længde-vægge 23 cm fuld mur
Etage-højde: 2.9 m
Samlet facadelængde 13 m.

Vinduer
Udført i træ med koblede indadgående rammer
Stue 211 x 141 cm
Værelse 151 x 141 cm
Værelse 121 x 121 cm
U-værdi = 2.4 W/m²K.

Altandørsparter
Let facadeelement 108 x 259 cm, lægteskelet med 35 mm polysterol, asfalt-pap, 8 mm Eternit med isat altandør 83 x 225 cm
U-værdi = 0.9 W/m²K
Let facadeelement 223 x 259 cm, 9 mm gips, lægteskelet med 100mm Rockwool, asfalt-pap, 8 mm Eternit med isat vindue 151 x 141 cm
U-værdi = 0.4 W/m²K.

Altaner
250 x 180 cm betonelement.

Badeværelser
Undervægge er beklædt med 15 x 15 cm fliser
Overvægge og loft er malede
Terrazzo-gulv
Toilet, håndvask
Netto badeværelse 3.19 m².

Køkkener
Køkkenelementer er udført af spånplade med gråmalet overflade
Bordplade er med hvid laminat og træliste på forkant
Bordplade af skifer ved komfur
Ingen fliser
220 cm bordplade incl. vask
280 cm overskabe
90 cm højt skab
Komfur og køleskab, plads til opvaskemaskine
Netto køkkenareal 10.40 m².
Gulve
Bøgeparket på strør.

Skabe i øvrigt
Garderoberum 2.33 m² med 60 x 60 cm kosteskab, 50 x 40 cm hyldeskab og 110 cm garderobe.

Opvarmning
Golf Paveo pladeradiatorer, tilsyneladende med håndventiler.

El
I alt 11 lampesteder, 20 stikkontakter
1 antennestik, 1 telefonstik
Tilsyneladende ingen hårde hvidevarer?

Ventilation
Central udsugning.

Elevator
Nej.
Emaljehaven (Marstrands Have)

Beskrivelse
Opført 2005-06
Boligblok med 2 sidefløje, 5 etager og kælder
Bygningsbredde 11.88 m
Ca. 180 boliger, heraf 60 almen nyttige, fordelt på 19 opgange.
Betonelement-byggeri
Fladt paptag, 1:40
3-rums-lejlighed, Type X01, netto 76.9 m², brutto 87.3 m²
Målt netto 67 m² brutto 78.3 m² excl. opgang.

Udført renovering
Ingen.

Facader
90 mm forplade, 170 mm isolering, 150 mm bagmur i beton
U-værdi = 0.22 W/m²K
Etage-højde: 2.9 m
Samlet facadelængde 13.5 m.

Vinduer
7 stk. oplukkelige vinduer Velfac System 201, 80 x 95 cm
U-værdi = 1.9 W/m²K.
1 stk. fast parti Velfac System 210, 80 x 250 cm
U-værdi = 1.7 W/m²K.

Altandørsportier
1 stk. altandør Velfac System 231, 90 x 250 cm
U-værdi = 1.8 W/m²K.

Altaner
Stålkonstruktion, ca. 5 m² gulv af hårdt træ
Værn af galvaniseret stål og glas.

Badeværelser
Præfabrikeret modul
Fliser fra gulv til loft i bruseniche, væglængde 2 x 90 cm
20x20 mm ugglasert mosaik, fa. Cinca nr. 201
alternativt
147x147 mm blankhvite, fa. Eversign type arkitekt
Gulvklinker 20x20 mm ugglasert mosaik, fa. Cinca nr. 201
alternativt
305x305x10 mm granitflise type kuro grey lagt diagonalt
151x151x10 mm granitflise i bruseniche type Kuro grey – lagt diagonalt
Væghængt Toilet
Bordplade, 60 x 180 cm, 20 mm spånplade med 60 mm forkanter, Nedfældet
håndvask, ø41 cm, fa. Johnson, porcelæn
alternativt
20 mm granit med poleret forkant, underlimet oval nedfældningsvask ø41
cm fa. Johnson, TWYFORD.Aria.
60 cm underskab, soft hvid fa. ABT, uden sokkel
Spejl 130 x 180 cm, Fliserækker i ialt 30 cms højde over vask i vaskens
bredde
Vandbaseret gulvvarme, returventil fa. Danfoss, type FIVR, termostat, fa.
Danfoss
Netto badeværelse 4.1 m²
Køkkener
180 cm laminatbordplade inkl. køkkenvask
2 underskabe a 30 cm, 2 underskabe af 60 cm
120 cm rulleskab
240 cm overskabe
Skabsmoduler fa. ABT Køkken, type plan med lys grå låger
Fliser mellem bordplade og overskabe
Brandt Køle-/fryseskab C0311bW/hvid - integreret
Indbygningskogeplade Zanussi ZKT 621 LX
Indbygningovn Zanussi ZBQ 631 X
Opvaskemaskine Brandt – VF 220J - Integreret
Emhætte, centralt sug
Netto køkkenareal 7.8 m².

Gulve
Lamelparket i ask.

Skabe i øvrigt
Ingen.

Opvarmning
Radiatorer m/termostater.

El mv.
og iht. lovgivning?
6 lampesteder og 5 stk. indbygningsspot i badeværelsesloft samt spots under overskabe i køkken
16 stikkontakter stik, herunder et over badeværelsesbordplade, samt stik til vaskemaskine og opvaskemaskine
TV-stik i stue og soveværelse
Telefon-stik i stue og soveværelse
Et internet-stik.

Ventilation
Mekanisk udsugning fra badeværelse og køkken af centralt udsugningsanlæg.

Elevator
Ja.
Havnestaden

Beskrivelse
Boligblok med 6 etager og kælder
Bygningsbrede 11.87m
Facader med pudset udvendig isolering
Tagkassetter med 2 lag pap
30 boliger fordelt på 3 opgange
Lejlighed med målt netto 78 m² og brutto 83 m² excl. opgang og altaner.

Udført renovering
Ingen.

Facader
150 mm beton, 250 mm facadebatts, indfarvet puds
U-værdi = 0.15 W/m²K
Etagehøjde: 2.87m
Samlet facadelængde: 13.27m.

Vinduer/ Altandørspartier
Alu-Træ vinduer (alu udv, træ indv.) med energiglas
Idealcombi: Combi-Frame, -Nation, -Combifutura
1 stk facadeparti 553cm x 240 cm
1 stk facadeparti 415cm x 240 cm
U-værdi = 1.5 W/m²K.

Altaner
Hårdt træ med galvaniseret stålvalør, 8.1 m² samt pudsealtan på 1.77 m².

Badeværelser
Præfabrikeret modul
Fliser (Winkelmans fra Evers 5 x 5 cm) fra gulv til loft i bruseniche samt gulv
Håndvask og væghængt toilet
Spejl 129 x 141 cm samt reol med glashylder
Vaskemaskine og tørretumbler.

Køkkener
Type PRINCIPIEL
360 cm 40 mm lamineret bordplade med forkant og skureliste af børstet stål
eller aluminium
6 stk underskabe 60 x 60 cm
5 stk overskabe 60 x 35 x 70 cm
Ingen fliser
Køle-/fryseskab, kogeplader, ovn til indbygning
Forberedt for opvaskemaskine
Emhætte.

Gulve
14 mm Lakeret ask.

Skabe i øvrigt
Ingen.

Opvarmning
Radiatorer med termostater.
El mv
4 lampesteder samt 7 stk. spot med lysdæmper i loft på badeværelse og 8 stk. spot i loft i køkken
Belysning under underskabe i køkken
14 stikkontakter samt stik til vaskemaskine og opvaskemaskine
Central slukning af lys
Netværk for IT
Målerskab fm/computer.

Ventilation
Central mekanisk.

Elevator
Ja.
Bilag 3. Sammenligning af løsninger

De fire lejligheder

<table>
<thead>
<tr>
<th>Lejlighed nr.</th>
<th>Generel beskrivelse</th>
</tr>
</thead>
</table>
| 1 | Beliggenhed: Herman Bangs Plads
 Opført 1957
 4-rums-lejlighed, Type 90.2 m²
 Målt netto 68.2 m²; brutto 84 m² excl. opgang |
| 2 | Beliggenhed: Sjælør Boulevard
 Opført 1970
 3-rums-lejlighed, Type 90.05 m²
 Målt netto 70.9 m²; målt brutto 81.9 m² excl. opgang |
| 3 | Beliggenhed: Emaljehaven
 Opført 2005-06
 3-rums-lejlighed, Type X01, netto 76.9 m²; brutto 87.3 m²
 Målt netto 67 m²; brutto 78.3 m² excl. opgang |
| 4 | Beliggenhed: Havnestaden
 Opført 2005
 3-rums-lejlighed, Type 94,3 m²
 Målt netto 78 m² og brutto 83 m² excl. opgang og altaner |

I forhold til dagens standard vedrører undersøgelsen ret små boliger. Tendensen i den betragtede periode er, at boligarealerne pr. lejlighed bliver større. Dette forhold er dog ikke tillagt væsentlig betydning.
<table>
<thead>
<tr>
<th>Lejlighed nr.</th>
<th>Beskrivelse af facader</th>
</tr>
</thead>
</table>
| 1 | 1½-stens massiv ydermur plus indvendig ½-stens mur af klinkerbetonsten.
U-værdi = 1.0 W/m²K
Bryshninger er 1-stens massiv mur isoleret med 2.5 cm klinkerbetonplader.
U-værdi = 2.5 W/m²K
Bryshningsareal: 3.6 m²
Etage-højde: 2.94 m
Samlet facadelængde: 16.75 m
Facadeareal excl. vinduer/vinduespartier incl. bryshningsareal: 36.2 m² |
| 2 | Langsgående facader er massivt uisoleret 1½-stens murværk.
U-værdi = 1.5 W/m²K
Tvær- og længde-vægge 23 cm fuld mur
Etage-højde: 2.9 m
Samlet facadelængde: 13 m
Facadeareal excl. vinduer/vinduespartier: 22.3 m² |
| 3 | 90 mm forplade, 170 mm isolering, 150 mm bagmur i beton
U-værdi = 0.22 W/m²K
Etage-højde: 2.9 m
Samlet facadelængde: 13.5 m
Facadeareal excl. vinduer/vinduespartier: 29.6 m² |
| 4 | 150 mm beton, 250 mm facadebatts, indfarvet puds
U-værdi = 0.15 W/m²K
Etagehøjde: 2.87m
Samlet facadelængde: 13.27m
Facadeareal excl. vinduer/vinduespartier: 14.9 m² |
Facade-/ vinduesparti

<table>
<thead>
<tr>
<th>Lejlighed nr.</th>
<th>Beskrivelse af vinduer/facadepartier</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vinduer:</td>
</tr>
<tr>
<td></td>
<td>Karme og poster 2" x 5" træ.</td>
</tr>
<tr>
<td></td>
<td>Løsholter 2½" x 5" træ.</td>
</tr>
<tr>
<td></td>
<td>Udføres med diverse noter og kehler.</td>
</tr>
<tr>
<td></td>
<td>Koblede vinduer med forsatsrammer, dog ikke i overrammer 35 x 133 cm.</td>
</tr>
<tr>
<td></td>
<td>3 stk. tre-rammede vinduer 133 x 133 cm</td>
</tr>
<tr>
<td></td>
<td>U-værdi = 2.2 W/m²K ved forsatsrammer</td>
</tr>
<tr>
<td></td>
<td>U-værdi = 4.1 W/m²K uden forsatsrammer</td>
</tr>
<tr>
<td></td>
<td>Altandørsparter</td>
</tr>
<tr>
<td></td>
<td>Karme 2½" x 5" træ.</td>
</tr>
<tr>
<td></td>
<td>Bundstykke af egetræ.</td>
</tr>
<tr>
<td></td>
<td>Koblede vinduer med forsatsrammer, dog ikke i overrammer og ikke i sideruder.</td>
</tr>
<tr>
<td></td>
<td>1 stk. altanparti mod gade 205 x 223 cm med dobbelt dør i alt 115 x 188 cm og 2 stk. sidevinduer 45 x 188 cm og overramme 205 x 35 cm.</td>
</tr>
<tr>
<td></td>
<td>1 stk. altanparti mod gård 133 x 223 cm med dobbelt dør i alt 133 x 188 cm og overramme 133 x 35 cm uden sidevinduer</td>
</tr>
<tr>
<td></td>
<td>U-værdi = 2.2 W/m²K ved forsatsrammer</td>
</tr>
<tr>
<td></td>
<td>U-værdi = 4.1 W/m²K uden forsatsrammer</td>
</tr>
<tr>
<td>2</td>
<td>Vinduer</td>
</tr>
<tr>
<td></td>
<td>Udført i træ med koblede indadgående rammer.</td>
</tr>
<tr>
<td></td>
<td>Stue 211 x 141 cm</td>
</tr>
<tr>
<td></td>
<td>Værelse 151 x 141 cm</td>
</tr>
<tr>
<td></td>
<td>Værelse 121 x 121 cm</td>
</tr>
<tr>
<td></td>
<td>U-værdi = 2.4 W/m²K</td>
</tr>
<tr>
<td></td>
<td>Altandørsparter</td>
</tr>
<tr>
<td></td>
<td>Let facadeelement 108 x 259 cm, lægteskelet med 35 mm polyester, asfalt Pap, 8 mm Eternit med isat altandør 83 x 225 cm</td>
</tr>
<tr>
<td></td>
<td>U-værdi = 0.9 W/m²K</td>
</tr>
<tr>
<td></td>
<td>Let facadeelement 223 x 259 cm, 9 mm gipsonit, lægteskelet med 100 mm Rockwool, asfalt Pap, 8 mm Eternit med isat vindue 151 x 141 cm</td>
</tr>
<tr>
<td></td>
<td>U-værdi = 0.4 W/m²K</td>
</tr>
<tr>
<td>3</td>
<td>Vinduer</td>
</tr>
<tr>
<td></td>
<td>7 stk. oplukkelige vinduer Velfac System 201, 80 x 95 cm.</td>
</tr>
<tr>
<td></td>
<td>U-værdi = 1.9 W/m²K</td>
</tr>
<tr>
<td></td>
<td>1 stk. fast parti Velfac System 210, 80 x 250 cm</td>
</tr>
<tr>
<td></td>
<td>U-værdi = 1.7 W/m²K</td>
</tr>
<tr>
<td></td>
<td>Altandørsparter</td>
</tr>
<tr>
<td></td>
<td>1 stk. altandør Velfac System 231, 90 x 250 cm</td>
</tr>
<tr>
<td></td>
<td>U-værdi = 1.8 W/m²K</td>
</tr>
<tr>
<td>4</td>
<td>Vinduer/ Altandørsparter</td>
</tr>
<tr>
<td></td>
<td>Alu-Træ vinduer (alu udv, træ indv.) med energiglas.</td>
</tr>
<tr>
<td></td>
<td>Idealcombi: Combi-Frame, -Nation, -Combifutura</td>
</tr>
<tr>
<td></td>
<td>1 stk facadeparti 553cm x 240 cm</td>
</tr>
<tr>
<td></td>
<td>1 stk facadeparti 415cm x 240 cm</td>
</tr>
<tr>
<td></td>
<td>U-værdi = 1.5 W/m²K</td>
</tr>
</tbody>
</table>
Badeværelser

<table>
<thead>
<tr>
<th>Lejlighed nr.</th>
<th>Beskrivelse af badeværelser</th>
</tr>
</thead>
</table>
| 1 | 12 rækker hvide 15x15 cm fliser
Terrazzo-gulv
Toilet, håndvask, siddebadekar udmuret og beklædt med fliser
Netto badeværelse 3.1 m² |
| 2 | Undervægge er beklædt med 15 x 15 cm fliser
Overvægge og loft er malede
Terrazzo-gulv
Toilet, håndvask
Netto badeværelse 3.19 m² |
| 3 | Præfabrikeret modul:
Fliser fra gulv til loft i bruseniche, væglængde 2 x 90 cm.
20x20 mm uglaseret mosaik, fa. Cinca nr. 201 alternativt
147x147 mm blankhvide, fa. Eversign type arkitekt.
Gulvklinker 20x20 mm uglaseret mosaik, fa. Cinca nr. 201 alternativt
305x305x10 mm granitflise type kuro grey lagt diagonal.
151x151x10 mm granitflise i bruseniche type Kuro grey – lagt diagonal.
Væghængt Toilet
Bordplade, 60 x 180 cm, 20 mm spånplade med 60 mm forkant, Nedfældet håndvask, ø41 cm, fa. Johnson, porcelæn alternativt
20 mm granit med poleret forkant, underlimet oval nedfældningsvask ø41 cm fa. Johnson, TWYFORD.Aria.
60 cm underskab, soft hvid fa. ABT, uden sokkel
Spejl 130 x 180 cm, Fliserækker i lart 30 cms højde over vask i vaskens bredde
Vandbaseret gulvvarme, returventil fa. Danfoss, type FIVR, termostat, fa. Danfoss
Netto badeværelse 4.1 m² |
| 4 | Præfabrikeret modul:
Fliser (Winkelmans fra Evers 5 x 5 cm) fra gulv til loft i bruseniche samt gulv
Håndvask og væghængt toilet
Spejl 129 x 141 cm samt reol med glashylder |
Køkken og skabe

<table>
<thead>
<tr>
<th>Lejlighed nr.</th>
<th>Køkkener og skabe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Køkkener</td>
<td></td>
</tr>
<tr>
<td>180 cm køkkenbord 1½” træ med underskabe, skabssider, hylder, hævet bund og forstilling af 1˚ træ. 3 glatte låger af ¾” rammer med 4mm krydstifer på begge sider</td>
<td></td>
</tr>
<tr>
<td>80 cm gasbord med forsømnet terrazzoplade, underskab og 2 läger</td>
<td></td>
</tr>
<tr>
<td>Overskabe l=1.6m, h= 1.2m, skrå forside, nederst åben hylde, herover 3 skydelåger af råglas.</td>
<td></td>
</tr>
<tr>
<td>3 rækker hvide 15x15 cm fliser over køkkenbord, 4 rækker over gasbord.</td>
<td></td>
</tr>
<tr>
<td>Skurelister</td>
<td></td>
</tr>
<tr>
<td>80x60 cm høj spisekammerskab med 2 glatte låger, hylder og overskab</td>
<td></td>
</tr>
<tr>
<td>60x60 cm kosteskab med glat lage og 5 skuffer, hylder og overskab.</td>
<td></td>
</tr>
<tr>
<td>Netto køkkenareal 7.3 m²</td>
<td></td>
</tr>
<tr>
<td>10 x 10 cm brikker af asfaltkork.</td>
<td></td>
</tr>
<tr>
<td>Skabe i øvrigt</td>
<td></td>
</tr>
<tr>
<td>80x50 cm garderobeskab med overskab, dobbeltlåger, udført som køkkenskabe dog hylder af sammenlimet træ.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Køkkener</td>
<td></td>
</tr>
<tr>
<td>Køkkenelementer er udført af spånplade med gråmalet overflade</td>
<td></td>
</tr>
<tr>
<td>Bordplade er med hvid laminat og træliste på forkant</td>
<td></td>
</tr>
<tr>
<td>Bordplade af skifer ved komfur</td>
<td></td>
</tr>
<tr>
<td>Fliser?</td>
<td></td>
</tr>
<tr>
<td>220 cm bordplade incl. vask</td>
<td></td>
</tr>
<tr>
<td>280 cm overskabe</td>
<td></td>
</tr>
<tr>
<td>90 cm høj skab</td>
<td></td>
</tr>
<tr>
<td>Komfur og keleskab, plads til opvaskemaskine</td>
<td></td>
</tr>
<tr>
<td>Netto køkkenareal 10.40 m²</td>
<td></td>
</tr>
<tr>
<td>Skabe i øvrigt</td>
<td></td>
</tr>
<tr>
<td>Garderoberum 2.33 m² med 60 x 60 cm kosteskab, 50 x 40 cm hyldeskab og 110 cm garderobe</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Køkkener</td>
<td></td>
</tr>
<tr>
<td>180 cm laminatbordplade inkl. køkkenvask</td>
<td></td>
</tr>
<tr>
<td>2 underskabe a 30 cm, 2 underskabe af 60 cm</td>
<td></td>
</tr>
<tr>
<td>120 cm rulleskab</td>
<td></td>
</tr>
<tr>
<td>240 cm overskabe</td>
<td></td>
</tr>
<tr>
<td>Skabsmoduler fa. ABT Køkken, type plan med lys grå låger</td>
<td></td>
</tr>
<tr>
<td>Fliser mellem bordplade og overskabe.</td>
<td></td>
</tr>
<tr>
<td>Brandt Køle-/fryseskab C0311bw/hvid – integreret</td>
<td></td>
</tr>
<tr>
<td>Indbygningskogepkade Zanussi ZKT 621 LX</td>
<td></td>
</tr>
<tr>
<td>Indbygningovn Zanussi ZBQ 631 X</td>
<td></td>
</tr>
<tr>
<td>Opvaskemaskine Brandt – VF 220J – Integreret</td>
<td></td>
</tr>
<tr>
<td>Emhætte, centralt sug</td>
<td></td>
</tr>
<tr>
<td>Netto køkkenareal 7.8 m²</td>
<td></td>
</tr>
<tr>
<td>Skabe i øvrigt</td>
<td></td>
</tr>
<tr>
<td>Ingen</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Køkkener</td>
<td></td>
</tr>
<tr>
<td>Type PRINCIPIEL</td>
<td></td>
</tr>
<tr>
<td>360 cm 40 mm lamineret bordplade med forkant og skureliste af bæret stål eller aluminium</td>
<td></td>
</tr>
<tr>
<td>6 stk underskabe 60 x 60 cm</td>
<td></td>
</tr>
<tr>
<td>5 stk overskabe 60 x 35 x 70 cm</td>
<td></td>
</tr>
<tr>
<td>Ingen fliser</td>
<td></td>
</tr>
<tr>
<td>Køle-/fryseskab, kogeplader, ovn til indbygning</td>
<td></td>
</tr>
<tr>
<td>Forberedt for opvaskemaskine</td>
<td></td>
</tr>
<tr>
<td>Emhætte</td>
<td></td>
</tr>
<tr>
<td>Skabe i øvrigt</td>
<td></td>
</tr>
<tr>
<td>Ingen</td>
<td></td>
</tr>
</tbody>
</table>
Altaner

<table>
<thead>
<tr>
<th>Lejlighed nr.</th>
<th>Beskrivelse af altaner</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 Franske</td>
</tr>
<tr>
<td>2</td>
<td>250 x 180 cm betonelement</td>
</tr>
</tbody>
</table>
| 3 | Stålkonstruktion, ca. 5 m² gulv af hårdt træ
Værn af galvaniseret stål og glas |
| 4 | Hårdt træ med galvaniseret stålværn, 8.1 m² samt pudsealtan på 1.77 m² |

Installationer

<table>
<thead>
<tr>
<th>Lejlighed nr.</th>
<th>Beskrivelse af installationer</th>
</tr>
</thead>
</table>
| 1 | I alt 9 lampesteder, 14 stikkontakter
Hårde hvidevarer? - ingen tilsyneladende
Ingen TV-, telefon og il-stik |
| 2 | I alt 11 lampesteder, 20 stikkontakter
1 antennestik, 1 telefonstik |
| 3 | 6 lampesteder og 5 stk. indbygningsspot i badeværelsesloft samt spots under overskabe i køkken
16 stikkontakter stik, herunder et over badeværelsesbordplade, samt stik til vaskemaskine og opvaskemaskine
TV-stik i stue og soveværelse
Telefon-stik i stue og soveværelse
Et internet-stik |
| 4 | 4 lampesteder samt 7 stk. spot med lysdæmper i loft på badeværelse og 8 stk. spot i loft i køkken
Belysning under underskabe i køkken
14 stikkontakter samt stik til vaskemaskine og opvaskemaskine
Central slukning af lys
Netværk for IT
Måløreskab fm/computer |

Ventilation

<table>
<thead>
<tr>
<th>Lejlighed nr.</th>
<th>Beskrivelse af ventilation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aftrækskanaler</td>
</tr>
<tr>
<td>2</td>
<td>Central mekanisk udsugning</td>
</tr>
<tr>
<td>3</td>
<td>Central mekanisk udsugning</td>
</tr>
<tr>
<td>4</td>
<td>Central mekanisk udsugning</td>
</tr>
</tbody>
</table>

Overflader

<table>
<thead>
<tr>
<th>Lejlighed nr.</th>
<th>Beskrivelse af overflader</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>? kvalitet, arealer</td>
</tr>
<tr>
<td>2</td>
<td>?</td>
</tr>
<tr>
<td>3</td>
<td>?</td>
</tr>
<tr>
<td>4</td>
<td>?</td>
</tr>
</tbody>
</table>
Bilag 4. Foto-dokumentation

Facader

Figur 8. Havnestaden – 2005

Figur 9. Havnestaden – 2005
Opgang

Badeværelse

I rapporten er sandsynliggjort, at værdien af øget byggeteknisk standard i boligbyggeri de seneste 50 år kan opgøres til omkring 20 pct. af håndværkerudgifterne. I samme periode er der næsten sket en tredobling af den forbrugerindeksregulerede pris på boligbyggeriet, således at værdien af den øgede standard kun forklarer en lille del af denne stigning. Efter korrektion for øget værdi af byggeteknisk standard er den forbrugerindeksregulerede pris på boligbyggeriet således mere end fordoblet.

Analysen styrker en hypotese om, at øget mangfoldighed i udbuddet af byggetekniske løsninger samt om at mere varierede (mindre) bebyggelser repræsenterer en betydelig værdi, som omvendt også rummer et potentielle for produktivitetsgevinster. Endvidere giver analysen ikke grund til at antage, at der er sket nogen væsentlig udvikling i rådgiverhonorarer.

1. udgave, 2010
ISBN 978-87-563-1416-9